Generate all partitions of same cardinality

generate_partitions(N, K, generate_permutations = FALSE)

Arguments

N

The total N. K has to be dividble by N.

K

How many partitions

generate_permutations

If TRUE, all permutations are returned, resulting in duplicate partitions.

Value

A list of all partitions (or permutations if generate_permutations is TRUE).

Details

In principle, anticlustering can be solved to optimality by generating all possible partitions of N items into K groups. The example code below illustrates how to do this. However, this approach only works for small N because the number of partitions grows exponentially with N.

The partition c(1, 2, 2, 1) is the same as the partition c(2, 1, 1, 2) but they correspond to different permutations of the elements [1, 1, 2, 2]. If the argument generate_permutations is TRUE, all permutations are returned. To solve balanced anticlustering exactly, it is sufficient to inspect all partitions while ignoring duplicated permutations.

References

Papenberg, M., & Klau, G. W. (2021). Using anticlustering to partition data sets into equivalent parts. Psychological Methods, 26(2), 161–174. https://doi.org/10.1037/met0000301.

Author

Martin Papenberg martin.papenberg@hhu.de

Examples


## Generate all partitions to solve k-means anticlustering
## to optimality.

N <- 14
K <- 2
features <- matrix(sample(N * 2, replace = TRUE), ncol = 2)
partitions <- generate_partitions(N, K)
length(partitions) # number of possible partitions
#> [1] 1716

## Create an objective function that takes the partition
## as first argument (then, we can use sapply to compute
## the objective for each partition)
var_obj <- function(clusters, features) {
  variance_objective(features, clusters)
}

all_objectives <- sapply(
  partitions,
  FUN = var_obj,
  features = features
)

## Check out distribution of the objective over all partitions:
hist(all_objectives) # many large, few low objectives

## Get best k-means anticlustering objective:
best_obj <- max(all_objectives)
## It is possible that there are multiple best solutions:
sum(all_objectives == best_obj)
#> [1] 4
## Select one best partition:
best_anticlustering <- partitions[all_objectives == best_obj][[1]]
## Look at mean for each partition:
by(features, best_anticlustering, function(x) round(colMeans(x), 2))
#> INDICES: 1
#> V1 V2 
#> 13 16 
#> ------------------------------------------------------------ 
#> INDICES: 2
#>    V1    V2 
#> 13.00 16.14 


## Get best k-means clustering objective:
min_obj <- min(all_objectives)
sum(all_objectives == min_obj)
#> [1] 1
## Select one best partition:
best_clustering <- partitions[all_objectives == min_obj][[1]]

## Plot minimum and maximum objectives:
user_par <- par("mfrow")
par(mfrow = c(1, 2))
plot_clusters(
  features,
  best_anticlustering,
  illustrate_variance = TRUE,
  main = "Maximum variance"
)
plot_clusters(
  features,
  best_clustering,
  illustrate_variance = TRUE,
  main = "Minimum variance"
)

par(mfrow = user_par)